Multi-dimensional integral limit theorems for large deviations
نویسندگان
چکیده
منابع مشابه
Large deviations of combinatorial distributions II: Local limit theorems
This paper is a sequel to our paper [17] where we derived a general central limit theorem for probabilities of large deviations1 applicable to many classes of combinatorial structures and arithmetic functions; we consider corresponding local limit theorems in this paper. More precisely, given a sequence of integral random variables {Ωn}n≥1 each of maximal span 1 (see below for definition), we a...
متن کاملLarge Deviations of Combinatorial Distributions I: Central Limit Theorems
We prove a general central limit theorem for probabilities of large deviations for sequences of random variables satisfying certain natural analytic conditions. This theorem has wide applications to combinatorial structures and to the distribution of additive arithmetical functions. The method of proof is an extension of Kubilius’ version of Cramér’s classical method based on analytic moment ge...
متن کاملLimit Theorems for Multi-dimensional Random Quan- Tizers
We consider the r th power quantization error arising in the optimal approximation of a d-dimensional probability measure P by a discrete measure supported by the realization of n i.i.d. random variables X1, ...,Xn. For all d ≥ 1 and r ∈ (0,∞) we establish mean and variance asymptotics as well as central limit theorems for the r th power quantization error. Limiting means and variances are expr...
متن کاملStone-Weierstrass type theorems for large deviations
We give a general version of Bryc’s theorem valid on any topological space and with any algebra A of real-valued continuous functions separating the points, or any wellseparating class. In absence of exponential tightness, and when the underlying space is locally compact regular and A constituted by functions vanishing at infinity, we give a sufficient condition on the functional Λ(·)|A to get ...
متن کاملIntegral analogues of almost sure limit theorems
An integral analogue of the general almost sure limit theorem is presented. In the theorem, instead of a sequence of random elements, a continuous time random process is involved, moreover, instead of the logarithmical average, the integral of delta-measures is considered. Then the general theorem is applied to obtain almost sure versions of limit theorems for semistable and max-semistable proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 1967
ISSN: 0004-2080
DOI: 10.1007/bf02591679